
Softmax is a method to obtain probabilities from outputs. It basically is a generalization of the
sigmoid (logistic) loss to more than two classes. We can use it for binary classification as well.
The idea of softmax is to take the outputs in the final layer and convert them to probabilities.

Suppose the outputs in the final layers are and . Then the softmax𝑧
1

= 𝑤
1

𝑇𝑥 𝑧
2

= 𝑤
2

𝑇𝑥

conversion is where .𝑠
1

= 𝑒
𝑧

1

𝑍 , 𝑠
2

= 𝑒
𝑧

2

𝑍 𝑍 = 𝑒
𝑧

1 + 𝑒
𝑧

2

If we assume that s2 = 1-s1 then the above is the same as logistic regression.

Homework: can you prove the above statement?

To understand the origins of logistic and softmax see Section 10.7 in Introduction to Machine
Learning by Alpaydin Second Edition. We provide a brief recap here from Alpaydin’s textbook.

For multiple classes the logistic loss becomes softmax.

Now that we have reviewed logistic loss let us write out the objective of a single layer neural
network shown below.

The least squares loss is given by where 𝛔(x) is𝑓 = ((𝑤
1
, 𝑤

2
, 𝑤

3
)𝑇(σ(𝑠𝑇𝑥), σ(𝑢𝑇𝑥), σ(𝑣𝑇𝑥)) − 𝑦)2

an activation function such as sigmoid or relu. In this document we let 𝛔(x) be the sigmoid

activation: .σ(𝑥) = 1/(1 + 𝑒−𝑥)

Instead of minimizing the difference between true and predicted values we can try to maximize
the probability of the output. First we have to define this probability. Fortunately the logistic loss
gives us a straightforward way to convert outputs to probabilities. Thus we write the loss as

where . Now the loss is a𝑓 = 𝑝 = 1/(1 + 𝑒−𝑧) 𝑧 = (𝑤
1
, 𝑤

2
, 𝑤

3
)𝑇(σ(𝑠𝑇𝑥), σ(𝑢𝑇𝑥), σ(𝑣𝑇𝑥))

probability and so we want to maximize this if the label y = 1 and maximize

if the label y = 0. We can write the objective as one function:𝑓 = 1 − 𝑝 = 1 − (1/(1 + 𝑒−𝑧))

𝑓' = 𝑝𝑦(1 − 𝑝)(1−𝑦)

The empirical loss can be written as the likelihood which is a product of the above probabilities
as shown in equation 10.22 above.

𝑒𝑚𝑝𝑙𝑜𝑠𝑠 = Π
𝑖
𝑝

𝑦
𝑖(1 − 𝑝)

(1−𝑦
𝑖
)

By definition the loss function is to be minimized and so we take the negative log to convert this
to a machine learning loss function. We can now write the loss as

𝑓 = − 𝑙𝑜𝑔(𝑓') = − 𝑦𝑙𝑜𝑔(𝑝) − (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝) =− 𝑦𝑙𝑜𝑔((1/(1 + 𝑒−𝑧))) − (1 − 𝑦)𝑙𝑜𝑔((1 − 1/(1 + 𝑒−

(see equations 10.22 and 10.23).

Let’s rewrite this succinctly as

where .𝑓 =− 𝑦𝑙𝑜𝑔(𝑠) − (1 − 𝑦)𝑙𝑜𝑔((1 − 𝑠)) 𝑠 = 1/(1 + 𝑒−𝑧)

We now proceed to derive the update equations for the final layer and intermediate layer
weights.

where ,𝑑𝑓/𝑑𝑤
1

= 𝑑𝑓/𝑑𝑠 𝑑𝑠/𝑑𝑧 𝑑𝑧/𝑑𝑤
1

𝑑𝑓/𝑑𝑠 =− 𝑦/𝑠 + (1 − 𝑦)(1/(1 − 𝑠)) 𝑑𝑠/𝑑𝑧 = 𝑠(1 − 𝑠)

, and 𝑑𝑧/𝑑𝑤
1

=σ(𝑠𝑇𝑥)

Similarly we get the weight updates for .𝑤
2
, 𝑤

3

Now we do the inner layer weights:

(can also be written as𝑑𝑓/𝑑𝑠
1

= 𝑑𝑓/𝑑𝑠 𝑑𝑠/𝑑𝑧 𝑑𝑧/𝑑𝑠
1

𝑑𝑓/𝑑𝑠
1

= 𝑑𝑓/𝑑𝑠 𝑑𝑠/𝑑𝑧 𝑑𝑧/𝑑σ 𝑑σ/𝑑𝑠
1

)where and the other derivatives are the same as above.𝑑𝑧/𝑑𝑠
1

= 𝑤
1
σ(𝑠𝑇𝑥)(1 − σ(𝑠𝑇𝑥))𝑥

1

Similarly we derive weights for 𝑠
2
, 𝑢

1
, 𝑢

 2
, 𝑣

1
, 𝑣

2
.

